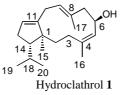
A New Diterpenoid from Hydroclathrus tenuis

Xiao Hua XU*, Xiao CHEN, Jian Hua LU, Guang Min YAO, Yan Ming LI


Institute of Elemento-Organic Chemistry, Nankai University Tianjin 300071

Abstract: A new dolabellane diterpene 1, named as hydroclathrol, has been isolated from the alga *Hydroclathrus tenuis*. Its structure has been determined on the basis of spectral analysis as 1, 4, 8-trimethyl-14-isopropyl-bicyclo [9, 3, 0]-4(Z), 8(E), 11(Z)-tetradeca triene-6-ol.

Keywords: Hydroclathrus tenui, hydroclathrol, spectral analysis.

A number of diterpenoids based on the dolabellene skeleton have been isolated from marine sources, and many of them possessed remarked biological activities¹⁻⁴. In this paper we would like to report a new Nor-dolabllane diterpene **1**, hydroclathrol, from the alga *Hydroclathrus tenuis* collected from Xisha Islands in the South China Sea.

The EtOH extract of the alga *Hydroclathrus tenuis* was partitioned between EtOAc and H_2O , and the resulted organic layer was twice chromatographed on a silica gel column to yield hydroclathrol **1**.

Hydroclathrol **1**, colorless needle crystals, mp. 124-125°C, gave a molecular ion peak in its EIMS at m/z: 288, and its ¹³C-NMR DEPT spectrum was assigned to five methyls, five methenes, six methines and four quaternal carbons, corresponding to the molecular formula C₂₀H₃₂O, which required five degrees of the unsaturation. Its IR (KBr, v) 1679 cm⁻¹ and ¹H-NMR signals at δ 5.37 (brs), 5.04 (brs) and 4.74 (brs) supported the existence of three tri-substitute double bond, therefore, hydroclathrol **1** must be a bicyclic compound. The IR spectra of **1** exhibiting an absorption band at 3425 cm⁻¹ indicated the presence of the hydroxyl group, and the significant ion m/z: 270 (M-H₂O)⁺ also confirmed the existence of the hydroxyl group. Data of IR (KBr, v) 1375, 13 88 cm⁻¹ and MS m/z: 245 (M⁺-43), 43 (67) showed the presence of an isopropyl group. ¹H-NMR showed five methyl group signals at $\delta_{\rm H}$ (0.85, 0.88, 0.92, 0.94, 1.49), corresponding to 19-Me, 16-Me, 20-Me, 15-Me and 17-Me, respectively. Four separated spin-systems "(CH₃)₂CHCHCH₂CH="(a), "-CH₂CH₂-" (b), "=CHCH(OH)CH₂-" (c) and "=CHCH₂-" (d) were identified by means of ¹H-¹H COSY and ¹H-¹³C COSY spectra. Based on the HMBC correlations of hydroclathrol **1** (Table **1**), the partial structure "a-d"

Xiao Hua XU et al.

could be connected as structure **1**, and the 15-Me was transferred^{5,6}. The 4(*Z*)-geometry of the olefinic bond was assigned on the basis of NOE correlation between H-16 and H-6, and the E- geometry of 8, 9-olefin resulted in NOE correlation between H-7 and H-9. The sterochemistry at C-6 could be deduced from the NOE correlation between H-6 and H-15, 15- α -Me was assigned from NOE correlation between H-15, H-6 α and H-13 α (2.08), and 14- α -isoPr was suggested from NOE correlation between H-14 and H-13 β (1.19).

Table 1 NMR data of hydroclthrol 1 (500 MHz, CDCl3)

Position	$\delta_{\rm C}$	δ_{H}	Key HMBC (C-H)
1	41.84		C-1, H-2, 3, 14, 15
2	38.92	1.88 (m, 2H)	
3	35.34	1.19 (m, 2H)	
4	138.11		C-4, H-5, 6, 3, 2, 16
5	127.05	4.74 (brs, 1H)	
6	78.46	4.20 (m, 1H)	
7	49.58	2.29 (d, 5Hz, 1H), 2.16 (d, 5Hz, 1H)	
8	134.91		C-8, H-7, 6, 9, 10, 17
9	125.81	5.37 (brs, 1H)	
10	29.32	2.76 (dd, 2.5, 1.6 Hz, 1H), 2.55 (dd, 2.5, 1.6 Hz, 1H)	
11	150.19		C-9, H-12, 13, 15, 2, 4, 9
12	123.34	5.04 (brs, 1H)	
13	32.52	1.19 (m, 1H), 2.08 (m, 1H)	
14	51.28	1.70 (m, 1H)	
15	26.18	0.94 (s, 3H)	
16	11.51	1.49 (s, 3H)	
17	16.75	0.88 (s, 3H)	
18	29.65	1.67 (m, 1H))	
19	22.28	0.85 (d, 5.8, 3H)	
20	22.18	0.92 (d, 6.1, 3H)	

References

- 1. L. A. Qing, D. J. Faulkner, J. Nat. Prod., 1998, 61, 1096.
- 2. S. A. Look, W. Fenical, J. Org. Chem., 1982, 47, 4129.
- 3. C. Tringcali, G. Oriente, M. Piattelli, et al. J. Nat. Prod., 1985, 48, 484.
- 4. C. Tringcali, G. Oriente, M. Piattelli, et al. J. Nat. Prod., 1984, 47, 615
- 5. M. Kohayashi, Tetrahedron Lett., 1984, 24, 5543.
- 6. B. F. Brwden, J. C. Coll, and S. J. Mitchell, Aust. J. Chem., 1978, 31, 2039.

Received 15 January, 2001